推广 热搜: 系统集成  弱电  集成  kvm  视频会议  服务器  思科  软件  SFP  拼接 

车位引导智能停车场管理系统的研究

   日期:2015-01-19     来源:广东艾科    作者:广东艾科    浏览:605    评论:0    
核心提示:针对传统停车场存在着收费管理混乱及整体运作效率低等问题,基于车牌识别的车位引导系统和免取卡视频收费系统组成的智能停车场管理系统在很大程度上解决这个问题。正广泛的应用于各大型停车场中。

1前言

随着我国经济的高速发展和人民的生活水平不断的提高,汽车数量急剧增加,很多城市出现了“停车难”的问题传统停车场管理系统已不能满足实际需求,大多数传统停车场存在着收费管理混乱,整体运作效率低等问题,基于此,智能停车场应运而生,它不仅可以有效地解决乱停乱放造成的交通混乱,而且可以促进交通设施的正规化建设,同时也尽可能地减少车主失车被盗的忧虑。

2智能停车场管理系统功能

1)对入场车辆自动实时检测,保存车辆图像,同时对车牌信息进行识别,同时保存车辆进入时间、车辆形状等相关信息,并控制道闸横杆的开启;

2)停车引导功能,车辆入场后,车位引导系统的LED信息显示屏和车位指示灯指引车辆最佳停车位置,引导车主快速的找到系统分配的空车位;

3)具有自主缴费功能,不需要其他收费人员采取任何操作的情况下,车主自主在自助缴费机中完成缴费;

4)反向寻车功能,车主只需要在寻车查询机中输入车牌号即可查询到车辆所在的位置,并以GIS地图的方式将最优路径显示给车主,让车主可以方便快速的找到自己的车;

5)LED显示屏,全中文显示欢迎词语、剩余车位信息、车位已满以及停车场的相关信息等;

6)能够对出入车辆进行自动检测,根据车牌号、车辆图像等相关信息对比确认车辆的进出时间,是否缴费;

7)强大的报表功能,车位引导系统可为停车场管理员提供详尽的停车场使用情况的各种类型报表。

3智能停车场管理系统结构

系统结构如图所示,主要包括出入口管理系统和视频车位引导&反向寻车系统两个部分,车牌图像识别系统通过视频流抓拍车辆正面图像并运用人工智能技术从图片中获取车牌,然后自动进行对比;系统在各停车场内部的路口设置了指引显示屏,引导车辆进入正确车道,在指定车位上的显示屏显示车牌号码,引导车辆停入预定区域的指定车位。

 

艾科视频车位引导系统实现智能停车场管理

4智能停车场管理关键技术-车牌识别技术

车牌识别技术以计算机技术、图像处理技术、模糊识别为基础,建立车辆的特征模型,识别车辆特征,如号牌、车型、颜色等,其是基于图像分割和图像识别理论,对含有车辆号牌的图像进行分析处理,从而确定牌照在图像中的位置,并进一步提取和识别出文本字符。采用动态连接库,嵌入到开发的应用程序,使用C++编程,运用多线程编写技术,即创建一个自动识别线程,并且设置了一个识别标志,保证系统在进行定位识别的时候不会出现第二个识别线程。车牌识别一般可以分为车牌定位、字符分割和字符识别3个主要步骤。

(1)车牌定位
为了精确定位,必须对车牌进行预处理来消除车身颜色不同以及环境因素给车牌定位造成的不良影响。

1)灰度处理:系统采集的车牌原始图像是24位RGB图,为了便于后续快速图像处理,有必要先将图像转为灰度图像,主要采用最大值法、平均值法和加权平均值法。

2)灰度图二值化:为了进一步提高图像的对比度,需要对灰度图进行二值化处理,二值化的关键在于阈值的确定,可采用Otsu算法进行灰度图二 值化。

3)边缘检测:采用Canny边缘检测法,其是一种比较新的边缘检测算子,具有很好的边缘检测性能,得到了越来越广泛的应用。该边缘检测法利用高斯函数的一阶微分,它能在噪声抑制和边缘检测之间取得较好的平衡。

4)中值滤波:中值滤波可以在消除噪声的同时保持图像的细节。中值滤波的主要工作步骤如下:

首先,将模板中心与图像中某个像素位置重合,然后,读取模板下各对应像素的灰度值,将这些灰度值从小到大排成一列,并找出这些值中排在中间的一个,最后,将这个中间值赋给对应模板中心位置的像素。

5)线扫描实现车牌定位:经过上述处理后,车牌图像中只有颗粒状的点和长短不一的曲线了,若在一个车牌长度内垂直长度超过阀值的曲线大于10条,则认为是在车牌区域之内,反之则认为在车牌以外的区域,通过对图像进行线扫描,找出满足条件的区域作为车牌候选区域。

(2)字符分割为了准确地识别牌照上的汉字、英文字母和数字,必须把单个字符从牌照中提取分离出来。用的字符切分方法有投影法板匹配法、区域生长法、聚类分析法等。本文采用模板匹配与垂直投影结合的方法分割字符,具体步骤如下:

1)统计车牌图像每列中白色像素的个数;

2)根据白色像素的个数对车牌图像的所有列进行分类,若白色像素个数为零,则该列属于背景列;否则该列属于字符列。

3)记下所有背景区域和字符区域的起始列和结束列,连续的字符列形成一个字符区域,连续的背景列形成一个背景区域。

4)计算车牌图像中所有的背景区域宽度和字符区域宽度。

5)判断第二个字符的区域的起始列以左的字符区域,离第二个字符的区域最近的字符区域是否己被标记。如果己被标记,则该字符区域被确定为车牌第一个字符的区域;否则证明该字符区域在垂直投影法下分割错误。

6)用确定第一个字符的区域和第二个字符的区域的方法对剩余字符区进行分割,确定车牌字符的区域。

(3)字符识别

常用的字符识别方法可以大致分为模板匹配法、结构模式识别、统计模式识别以及支持向量机等,本文采用较为简单的模板匹配法,中国大陆的车牌中使用的字符59个汉字、24个大写英文字母和10个阿拉伯数字三种类型共93个,且都是印刷体,结构固定、笔画规范。模板匹配是图像识别中最具有代表性的方法之一,将以待识别的图像提取的若干特征与模板对应的特征量进行比较,计算模板和特征量之间的距离,根据最小距离判定所属类。对于分割出来的二值字母和数字字符图像,先归一化为15×15像素,然后对其进行细化,最后建立匹配模板,提取特征向量,进行匹配识别。

5结束语

该方案以车牌自动识别技术、车位引导技术、自动控制技术和车辆检测技术于一体,以广东艾科为代表的车位引导系统的停车场管理服务商正将其广泛推广于大型停车场管理中,具有先进、安全、可靠、快捷、方便等特点,有效地解决了“停车难”的难题,定会越来越广泛的应用于大型停车场中。

 
打赏
 
更多>同类资讯
0相关评论

 
推荐资讯
点击排行

网站首页  |  付款方式  |  版权隐私  |  使用协议  |  联系方式  |  关于我们  |  网站地图  |  排名推广  |  广告服务  |  RSS订阅  |  违规举报  |  京ICP备11008917号-2  |